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ABSTRACT

We show that for the fermions in the T = 3/2
representation, the Sathiapalan-Tomaras generalisation of
their result for fermions in the T = 1 repreéentation,
cannot be obtained from the conservation laws of the full
S50(2) theory. We explicitly construct the effective
Lagrangian for this case, including the J = 0 and J = 1
gauge field fluctuations, and show that the equations of
motion couple J = 0 and J = 1 fermions. But the Green's
function involving couplings between the J =0 and J = 1

fermions is suppressed.

PACS numbers: 12.10, 14.80, 11.30, 11.10

# Operated by Universities Research Association Inc. under contract with the United States Department of Energy



-2- FERMILAB~Pub-83/104-THY

I. INTRODUCTION

The subject of monopole catalysis of barvon decay [1,2]
has been of great interest in the past vear. There have
been several studies [3,4] of fermions in the isospinor
representation of SU(2} interacting with the monopole,
because this is the case of interest in the 3U(5) GUT [5]1.
But, it 1is also of interest to study fermions in higher
representations interacting with the monopole, which could
be applicable in other GUT:.3uch an analysis has been done
far the T=1 case by Sathiavalan and Tomaras !81. They have
also argued that their results can be generalised to
arbitrary representations T.

Another development in the studv of the phenomenon of
monopcle catalvsis has been made by Sen [4]. For the T=1/2
case he showed that the Rubakov-Callan effect is A
aonsequence of the conservation laws of the full theory.
Hence, though the boundary conditions at the monopole core
were initially derived by solving the one-particle DNDirac
equation, they have a rigorous field theoretic
justification, because the conservation laws of the full
SU(2) theory lead uniguely to these boundary conditlions.

in this vaper, we try to rederive the
Sathiapalan-Tomaras results using the oonservation laws
approach. For T = 1 fermions, we find that the conservation
laws of the full SU(2) theory, along with the kinematic

constraints do lead us to unigue f£inal states, in agreement
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with their results. But for T=3/2 fermions, the
conservation laws allow certain orocesses, which Are
forhidden by the Sathiapalan-Tomaras analysis.This means
that the effrective Tagrangian obtained by solving the
one-particle Dirac equation has wmore coaservation laws than
the original theory. Hence, their boundary conditions no
longer have a field theoretiv Jastification, and hence,
merit a more careful analysis.

In section IT, we use the aonservation laws of Sen,

along with the kinematic constraints that can be derived for
the T=1 and T=3/2 cases, to predict final states, given the
initial states. We show that for T=3/2 ferwions, we do not
have enough conditions to predict a unique final state for
arery initial state. In section I1T, we rnonstruct the
effective Lagrangian for the T=3/2 fermions interacting with
the wmonopole, allowing for both J=0 and J=1 gauge field
excitations. In section IV, we show that in the absence of
J=1 gauge field excitations, the effeative Lagrangian
satisfies more conservation laws than the full 37(2) theory.
In the presence of these excitations however, the extra
conservation laws are violated. But using the effective
Lagrangian, we argue that the 3athiapalan-Tomaras forhidden
Drocesses are suppressed. In aAappendizx A, we give some
details of the derivation of the effective Lagrangian for
the fermions interacting with the classical monopole field.
In appendix B, we explain how the boundary condliitions ace

Jerived in the absence of gaunge field Eluctuations.
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II. CONSERVATION LAWS
In this section, we start with an 3U{(2) Lagrangian
spontaneoilsly broken Eto a U(l) by a triplet of Higgs. We
also have massless fermions in an arbitrary representation

of S5U(2). The Lagrangian for such a system is

—

cf = —4 T¥ Fﬂxv F:Aky + C ;l__ th LX LPJ
2

c =i
+(Du ) (DUB) — V(D) 21
where § is a Dirac spinor, and n is the number of Ffermion
families. We shall now analyse the system to find processes
that are allowed by the conservation laws in the presence of
the t'Hooft-Polvakov monopole

At = eiaj Ta ) EC) aa
where F(r) vanishes at the origin, .and tends Lo 1

exponentially outside the monopole core.
The conservation laws satisfied by this syskem have
been analysed by Sen{4), and for the two-family case, he

abtained the following conserved charges
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Sl ani S, count the total number of pariticies of tvoes 1 and
2, 53 measures the differences in helicities of particles of
types 1 and 2, and S, measures the total J(l) charge carried
by the fermions. For the isospinor case (¥ = ( X1/2'
X_l/z)), he also showed that we obtain four wnore constraints
by restricting ithe fermions to be in the J=0 partial wave so
that £-8 = -£+T. These eight constrainks are sufficient to
uniquely specify the final state for any initial state
configaration. Hence, in this approach the conservation
laws of the original SJ{2) TLagrangian along with the
xinematic helicity constraints uniguely lead us #to baryon
number violating processes.

What happens when we c¢onsider fermions in higher
representations of 377{(2) ? The conservation laws are still
the same, but the kinematic constraints are now different.To
see what the constraints are, let us reduce the relevant
part of the Lagrangian (=i$‘ﬂ P Y in terms of two- component
fields

G = Xe y . = X_R Q- F
- ¥ X
53ince for massless fields, the right and left haaded Fields

decouple, we may write [6]
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Ji - :Xf1+ (TL;}D + Ao - 3& Da - Lo A (fan_+;;2] XR
+ ><a_+[:£,ao + Ao w+_7£_LD.n. -6 [an *;%)] Xe
X8

whare DQ = DQ°+A.

i

Da. = inst [y -AA)Y ~ oL Eiaj T2
G

- LA -9
N = 60 €iaj Ta ¥ A0

We can easily verify that D translates 1into an angular

QO
nomentun barrier of the form [J2+1/4-(%« ™2}1/2, onis
specifies the vossible J walue for each E-? value.
(A) Fermions in the T=1 Representation.
X
G = Ko a-11

Xt
The subscript on y labels its ?-? value. Tt is olear that
only the J=1/2 partial wave of Xy and X_7; can enter the
monopole core,whereas Xg 1is prevented from entering the
monopole core for any value of J. Since ?v? = f«? + Eog, we
have X,p and X_j; as incoming fermions and Xj; and X_jx as
ontgoing fermions. Xg decouples from the problem, and
effectively (X,,X_y) acts as a doublet. So here again the
consaercvation laws along with the physical angular momentum
constraints yield rhe right number of conditions to lead to
a unigue final state for everv 1initial state. For

excample ,we have

| 2 2 ot
Xig + XA —2 Xl 4+ X
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uniquely.
(B) Fermions in the T=3/2 Representation

XJ/Q

4 = Xy 213

Koy,

X =34y
As before, the subscript on X 1abels its ?-F value. 'The
angular momentum barrier term allows onlvy the J=1 partial
wave for the ?-¥=i3/2 fermions and the J=0 partial wave for

-3 "~ =3 " =
the T-T=+1/2 fermions to enter the monopole core. r-J = 7T

A

r
A e X X X X

+ r-5 further tells us that 3/2Rr 1/2Rr  ~1/2L¢ and ~3/2L

are incoming fermions and X3/2L' Xl/2L' X—l/zR and X—3/2R
are outgoing fermions. But now the constraints that we have
are not sufficient to uniquely specify a final state for

every initial state.For example,

! 2 , 2P 4
Xaye + Xz — XapL + Xy R 214
2 '
—2 Xyt + K-y R Q15

Both final states are allowed by the conservation laws and
the kinematic constraints,though 2.15 is not allowed by the
Sathiapalan~Tomaras extension of their result for T=1. In
their case, (X3/2, X_3/2) and (Xl/z, X—l/z) act as decoupled
doublets, and 2.14 is the only final state. As explained in
the introduction, this discrepancy warrants a more careful

investigation of the problem.
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III. EFFECTIVE LAGRANGIAN FOR ISOSPIN 3/2 FERMIONS

In this section, we shall reduce the fermion and gauge
terms in the Lagrangian

no__ .
L = -1 TVF/JLJF“V + Lyt Py
2 [agy ]

+ (Dud)Y(D4P) —vip) 3.1

to a more tractable form in terms of the dynamical variables

of the problem.

{A) Fermion—AcL Interaction

Since we are dealing with massless fields, the left and
right handed components decouple, and hence, for
convenience, we shall derive the effective Lagrangian in

terms of the right handed fields.

£

H

;ai ( (de + Fo S B A (fﬁn +‘ﬁ:) - QE} ) Xg
A
32
We expand the fermion fields in J=0 and J=1 partial waves
using the basis in which J2,J3, £-S and r-T are diagonal

o
- T= o

X.q“o(’?,b) = Ly, v (6.¢) U.gl;-srn& (v, &)

2

+ Lyn(6.0) OS5 r(ve) 33

- m N
XD (Fe) 2 My (8,8) Uy (7€)

_ m . Ny
T Moy (€3 ) Doy (nt)
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- _
+ My (6, 8) Uy, (vE) -+

M5y (0.¢) D54 ()
+ M*}:‘L,“'/;z (@/¢) Ua{hr"/), (_(,t) -4

M"g}_;, v (©.¢) U‘a, v (% L_')
34

L1/2,—l/2 and L—l/2,1/2 represent J=0 tensors with

eigenvalues Lfai,fv§. Since J=0 ===> J

3 = 0, we Ado not
indicate it. M5 1,5, MT2,1720 Mly2,-1/20 M2,1/20
M;?I,—l/z' and M:§/2’1/2 are J=1 tensors with eigen wvalues
Mgi,$'€“§1 The explicit tensor skrucgtures have been given in
Appendix A.The same eigenvalue notation has been ased for
the 5 variables.

The details of the Jderivation of the affective
Lagrangian from 3.1 using explicit ktensor structures have
been outlined in Appenlix A. Here, we shall only mention
the following points. We work in the AO = 0 gauge. We make
explicit a 1/r Adependence of the U variables (i.e. T =
ﬁ/c), 3o that we may replace ( d»n + 1/r )} by 97 . The

results after angular integration are given below.

,ri k/fﬁf'ﬂbt d.sl

AT

+ | o _
[ Usgyr] (0o +edn) Uy - I3 (1 -Fem) U;z_ﬁ
+ u;;/,/ R{ (cao ‘LQn) Uab‘,\/,ﬁ Js (;»k(r)) U,/ _/}

+ l)/ hﬂi ( (do —LQA) U/ BR — Jfb (J”f170 u%fyﬂ
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+ 015:1 U M
Yy /,1 Yy Er
: . - _ L T
+ U7 ‘/ﬂi (id0 09n) Ugpyr + (- FeD) Uy yn
5 S : ; ) - .
4+ VL Uy pel
T

N . L T=D

- UT{;Rf ( 3o h;ah) Uy e - %_E (f’F('f,)) U—iz,yl‘a}

) - . ., g=0 -

f;vfﬁ? [ Ldo w-iBAJ U}Z:;&K + %_?% ( /’F("D UV;"}'LQ-}

I 3. 5

As we had expected, in the absence of gauge field
fFluactuations there is no term in the TLagrangian coupling the
J=0 and J=1 fermions.The boundary conditions at the wonodole

core that the fermion £fields have to satisfy, have been

derived in Appendix B, and in the limit rg*O,we geat

™ ™
Us, -ve + U-3,e  — 0 36
m -’
Uy, e — O 37
oy
U-y,, -4, R —> O 3-8

m
U I‘/R s —l/;t@. _-) O

W
O
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m .
U-y e > O 10

Y

Jzo F=O
u&/hR + Uﬁ@hR —> O B

The boundary conditions imoly that | U3/2,-1/2R)U—3/2,1/2ﬁ )
and Ul/z,-l/zﬁ’ U-l/z,l/ZR) act as decoupled doublets,while
the other four components decounle From the problem.
Exactly as 1in the Rubakov-Callan case, we may acompuke
Green's functions involving the two decoupled doublets and
we get nonN—-zZero Green's functions only Eor the

Sathiapalan-Tomaras allowed pdrocesses.

(B) Classical and Fluctuating Gauge Interactions

In the Rubakov-Callan case, only the J=0 fluctuations
ware included, since for the isospinor case, only the J=0
partial wave of ihe fermions could enter the monopole core.
But here, both J=0 and J=1 partial waves are allowed near
the monopole core, and so , we have no rationale for
ignoring the J=1 fluctuations.In Fact, if there exist
non-zero couplings between the J=0 and J=1 sectors, we
expect it to occur through suach excitations.We may expand

cl
ﬂia -+ ( g =0 _{{ucﬁuarmnmsj

Aia

g

+ (‘j:_jﬂ _fbxofuaf{ons) 312
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By using the explicit tensor structures of the fluctuating
fields and computing their mass and kinetic energy terms, we
may try to look for the relevant fluctuations, which are not
suppressed in the affective action.But a simpler way is to
use Callan's trick to find out those excitations that are
massless and have no contribution from the Fija rila  tara.

We use
rS

A U Bt Un' 4 0 UadiUN 3.i3

i

wnd
AT eEY Y T , R
where Uax = & and Al - Ao Ta

When A does not have any time dependence, this is nmerelv a

gauge transformation and hence costhts n0 energy.But the time

dependence of 3 leads to a nonzero ?Gi of the Forn
— A
o = PC)OH» R . R
AT EYY T _A;Qix)rfT
; i o~ b 3
— _ P B — e g "
= 2 ( 35J -'YLYJ ) (.f F(f)) e
g?
1 ~ :::_\.
+ (3cA Yy ¥ oo
{As mentioned earlier, we are working in the Ag = 0 gauge.)

To seperate excitations inte J=0 and J=1 parts, we make a

partial wave expansion of A{r,t) keeping only terms upto

A (;f/t:) = Aoe (7T, t) + 2Am (v E) éﬁn

345
We use this in 3.14 to compute
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T’; Foi o - ()\00 + )\im hm) ..‘.. _ 2____ L)ur‘h (émﬁ n "rm)]

.
" * ° ‘A ’2“ :
4 ()\oo 4+ A -hm) (]-—’FCT)) $'€
M+
Hence, the term in the effective action 1is (after angular

integration )

PR
L- uge j£-‘ == LHCL -+ .'!../\OC

;2>

bl om T A /A e (Aee + A /3 ) (1-F))”

6 )1'2—.
= LQCL_+ L oo 4 Lo m 3
{C) Fermion-Fluctuation Interaction

We are interested ia the effective Lagrangian from the

term E-,Kfl . Let us make a chandge of variables to get it

in a simpler form

As explained in the previous sub-section, this is almost a
gauge transformation, But the time dependence of A

introduces the following terms in the effective interaction

(after angular integecation.)

Lﬁ;‘* - j "E’JCR A ddL

=} L
- rtm
. R J-f'm .
= ).\_O.P[i Ué, ‘Qu:{w\ "‘i* U’/ /A_R'U.//R
71.2’
Uz+m m St m e
s 1 - " -t
+G'i /J,y‘l‘{ u/.,l i K iu Yoo V™ U- Y /;Q‘
+ 3 {)I+n’ : 2 (Jgﬁ) ;
‘;3- 3.~ _RUa, R 3’; L’»g/g,v,fp\ B YR

P e B AERT rt T ¥
41y U - J
o Yoo da BT M, R 'pE U'}’:w Yy R VB R
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- I
e L, +m TJ= 0 rfm P C
—+ Aem L U oo U‘_‘/ R - L L)—’)f. - QU,_l ! ]
—_— K - - 2 A 7
o |3 U Ve -y UaieUi
+ h'c.‘}
= Lfpree o+ Lpie 317
where the separation into Lﬂ;Aoo and LFé-)\un is
obvious. The point to note is thai terms in  LfZNm

couple J=0 fermions to J=1 fermions.The prime on the fermion
fields indicate that they are the transforumed fields. The
full effective Lagrangian <an now be written in terms of the
transformed fields.Incorporating the left and right handed

Fields, the Eull effective action is
Leff = LQCL -+ L‘f—"RJ...-ﬂ(" __’, L_{q{-’-—‘q(_{_
+ L Ao + LJFRJ Ao r L"F'“-—” O

-+ Lz\:m -+ L}:’R’F/\pm T+ Lll’,:-/\.lm
3- A0

We shall henceforth drop the primes on the fermion Fields.
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IV. DISCUSSION AND CONCLUSION

In this section, we shall laok at the conservation laws
of the effective T.agrangian and see how thev are affected by

the J = 1 gauge field Ffluctuations. We shall see that J = 1

excitations do couple J = 0 fermions to J = 1 fermioas,
although processes involving suah gouplings may be
suppressed.

As in section II, our theory contains two T = 3/2

fermion representations iInteracting with the monopole. 1In

the absencea of Alm terms, the effective NLagrangian for the

system is

A

—

2
Legp 7 Lact + E; Ly:an“ + 2= Lygs-pet

=1

[

< , 2 .
it i
~+ Lace -+ 2 - L—,)C,__L ~Xoc *+ .2_ L,fre “Neo
[} L =i
4.1
This Lagrangian is symmetric under the following

transformations,

N L cBlL -

G == e = e e 42

¢ ¢ Cc Ola

‘
bp" — e = e & o 43
L T cPoi L
XL —> X = e Xe 4 A4
N L e chie _
/)(ﬂ E— AR = = ’Xlﬁl 4 5
. m: ) ml-‘ m\‘,
whete Y! denotes the set ( nga,ga . L)ﬁﬁAi y Uk;dﬁ

Lt - 1~m.', i
Voyoy L)&fﬂi‘ ond Uy, ) and X' denotes the
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J=oL J:O/L
set (U,‘Q/-}ﬁ‘ , U')Q?V» )‘ Since one of the charges associated

with the ahove syametries is anomalous, along with the local

U (1) charge, we have the following eight conserved charges

L T=0 . ' . ot
5. = deh (X'RL+/‘(,Q + X XL.)
4 b
S N - P ¢+ : O )
LS.’, = !] d“f ( L/’Q (-PRL + (T Lr"{__t)
47
e =y i A t
O3 - JO‘Y( X Xe - XX
x4 ¥ '
~ XR xRS 4 xS X))
48
ST e (e - e
‘

- CJ‘*;PQ"HR + (,L:H t,lfbl)

Y
— B oy ,
=3 = de' ( be' ' e - 4 fe +
2 F 2 + a .
Ur g — ‘-H_:L G ) — 1 (X'R'+XR/
[k N 2+ 2 + A
— Xe X + Xk XR - 'X;_.'l X )

1 10O
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+me me e P
+ j ( v Sas Y U;{;, a oo e T U"/-w"/,l)
™ ) ""L: 1nn.' ) .rv’it:
{ T ! o R ;
-4 ; ( U A bi/a/'y,& U”}fy}’z Lb}s'}’-’t)
T=Ce , T=O0 e Too L T-0¢ —}
e L UT . U B , T
= ( RS LA {/“Z’D& hrba
<+ 1

Conservation of these charges lead ko a anigae final
state for any given initial state and is sufficient to rule
out process 2.15. Buat we know that the original 53(2)
theory had only four conservatioan laws, In fact, the
correspondence between the original conservel Juaantlies

defined in eguations 2.3 throngh 2.5 is
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(U
¢
¥
9!
%
N
"
i
192

41

$270 b 8,7 - sa 413
SALT:O - 53JEI - :53 i
S = S 4 T

Since the extra conservation laws Jdo ast come Ffrom the
full theory,they need not be stable under further gauage

Eield fluctuations. In Fact, if we introduce Alm terms, we

can  ho longer make independent transfoaraations on the J = 0
and J = 1 fermions - il.e., we are restricted to
transformations with Gd = ¢lic and Or = Per in
equations 4.2 through 4.5, Hence the full effective

Lagrangian, eguation 3.20, conserves only the charges Sl
through S, and should allow processes of the form 2.15.
Unfortunately, the conservation laws do aot give any
information about the amplitudes of the wvarious allowed
processes., To see whether any given process is suppressed
or enhanced, we have to compukte its Green's function
explicitly. ®or  the process 2.15, we are nok able to
calculate the Green's function exactly, b2t let us see how
far we can go with the information that we do have.
.

The equations of motion with klm = 0 are (in terms of

the variables A,B8,0,... Aefined in Appendix A.)

dnA + J3'¢ ( :——F-cv-)) D = O 416
s
— 32D 4+ 43 (1mFO) D =Vee =0 AT
) P
dInlt - R D o+ ({"’F{?‘))E - CAm H =0
Jr

S 412
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Sni4 — 4 ( ! "F:('a‘"_}) -4 —cAm & = 419
L -
o 13 - @ (f"F"f‘l’)) C = o 420
gl
- dnl + J3'¢ (f-—F(r))B —~ya' (K = 0o ENR
2 Pt
dn K - J;__h(, - & (1 ~chf3) K = CAhm T O
™ A '
- ¥}
dn {» + _4.2__ ( i ,F:(T_)) C;-\ — ¢ XM K = O 4 a3

A

To affect the Dboundary conditions near the origin, it is

@ -

clear that llm should have a 1/r dependence - 1i.e. llm =

a/r‘(;m' We could use this as an ansatz and derive the
boundary conditions at the origin.Eguations 4.7 through 4.10
form one set and eqguations 4.11 through 4.14 form anoither
set, and in general, it is clear that w= shall get boundary
conditions c¢oupling J=0 fermions to J=1 fermions. But when

we use this ansatz in the effective action

Segp = \f{,rldvdt 4 -t
we get terms of the Fform
Pt i
O‘ﬂ L adrdb =2 uﬁJ It 428
Te a e

Hence the effective action Dlows uap as lffo, causing a

suppression, unless the exsitation lasts only for a time of
order Nte , in which case, it 1is unlikely that these

momentary boundary conditions lead to any new processes. If

-3 [}

@2 take any softer dependence of le on ¢ (e.9.; llm = alnr
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leads to a finite action), the houandary conditions at the
origin are not affected, and we get back the sane hHoundary
conditions that we Jdervived in Appendix B. Hence, we
nconclude that the process

Xoa, + Xz, T2 Xyy ~+ Xy,
is suppressed.

We should emphasize the assuuptions that go into
deriving the above result. We have assumed that a momentary
boundary condition coapling the J=0 fermions to J=1 fermions
cannot vield any new progcess. This 1s a Dlaasible
assumption, but we cannot prove it. We have also consilered
oaly massless modes of excitation. This again seems
reasonable, since we would expect massive excitations 1o
NAave an Yo suppression, hut it has not heen rigorously
proved.

Hence, our conclusion, with the caveats mentioned above
is that the process

Kap o+ Xeayy = Xyt Xey,
is suppressed,even though there is no conservation law in

the full SU(2) theory to prevent such 4 Drocess.
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APPINDIX A

Here, we would like to outline the steps leading to the

effeckive Tagrangian for the fermionic sector. As we had

3

mentioned in Section 1T, we work in the J, J; = m, 2.7, £+ 38
diagonal basis.

Tz

J =02 S A
X @ = Ly Upor + Loy Uhypw 81
I | ™ el M m
X R = M;;,, ¥, U v,y &t M‘V_U Y Uy R

™ m m m
+ My Uppe + Moy Unge

iy

™ ™ ) , \1e
-+ M 3ty U 3, R -+ PJLB&Q/ Yo U Y 2 R

A

Let me define the following linearly independent tensors
1 ~ = . ~ o . .
PL‘Jhﬁg - (_‘Y'T(:‘)LJ éRo( +(Y'(C:’)Jk’. € i
(/\ A -

+ Y‘?“C’)JR éch A3

T2 ~ —a L. S — ~ o oy Y 3

Fijre = (T"L”G)Lj (Y-Z‘&)h(x 2 (‘Y»Z‘c-)J k(Y T€ )im

+ (F-Te )k CRIBIEENE

&iJRMﬂ,ﬂL = R = ([Cp(:):/ (@G)n,nz_ +

€ i (TP(")J“? ('?_‘Pe),q,nz_ -t Q\"m (?,}6),‘&(’@6 )rr(n;_
A <}
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‘l

ggﬂnxﬂﬁl = @>ge)mx(fpﬁ)g é}édnmL
+ (3.7 )i C?fpé')‘jk (Q»C)n,m_
+ (Y te )J”‘ (TP(:A)lR (@C’)HJ]L
Aé
&%Jnan,nl - O ch':)_i,j Ctpé)}qu(tpé)n.n;_.
+ (T 2€)jn (gedix (Tpedom
+ 5’ Te )éh (_‘CP{-)J'« (Tp€)nn. AF

Q%Lj:nxnlnl ol ("f t & )koc Eabce l’a (Z},L ) (Z} e )‘) N
(T [l & )L.D(. CC{_bC TCX (Cbt)Jk(?ﬁt)() Ao
+ (¥ T€ )ja Easc To (.(,,,,e) k (Tce)nn:
Ab
§%jrann, = Cre (G TEdy (% Te Yo

+ Eia (Fe)jr (B TE)nN,
+ €jx (¥ 2e)ir (§ ), A9

@%ﬁ{“%“n:% (Y ?“(,)n« (’Y ’Cé)LJ (‘( Te )nng
“ + (5 Te)in (5 te)y Gooe Yan
t (T (e))“(x'Tf_LR [Y TE)anL

AID
Here i,3J,k = 1,2 are isospin indices, a = 1,2 is a sbpin
index. ny and ny are indices which always appear

symmetrically and it can be identified with the J3 index

as
follows
(5 vy = 3
A
(4“ Z’E,)&a = ¥ Al

(%'?&')i&+&l = ;U A3



Next, we look at the

tensors that
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linear c¢combinations of these
are

. . - = B
eigen functions of r«T and r-S and hence

identify
Ly = (P rP) [ a7 ar
Lfbfh = (PIMED{)/‘4J? f >
MY, = (BTG /A0 Al
- : 1 "
:L/%A - ( E?b - é;bj) /‘4_b3 AL
Mm i ‘ 2 -3 &4.,&5.—@6)
3o Wy (8 +3§ -g° &6 -6"=-d7
VL Al
; 4 54 06
M (8 -ag s §°-.67 567
r&\hl At
M"w,/.z = e § G *‘S}4_f_‘pf>/5—fcfé)
AJET A Q0
, P i
MS;,-V_; = ( 8 ’_* ¢ ‘5)3____r - 8- 00 ‘)
A JE! Al
The normalisation factor comes Erom regquiring
R
J LyfﬁL Lbfﬂg dé} = | and similarly for the rest.
~Fr

To calculate the

effect of DQ

defined in equations 2.9 and 2.10 ).

and A on these te

effective Tagrangian, we need the

aNSOrs. (Dp and A have been

The resilts are the

following
[)QD Lb,j& = O Aaa
Dac Lo, wm = O A a3
- 1
Pag, My, -u = =& My A ast
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Dac Moy, = VT M A Aas
Dae My = V3" My, Aads
Dac Moy g = =V Moy 4, AR
Do ™ 35V, = O Aag
Dac M3,y =0 A 2

This agrees with our expectation that U3/2_1/2R,U_3/21/2R,

U1/2—1/2&and U_1/21/2f do not have an angular momentum

harrier. Ty get the effective Lagrangian inside the

monopole core, we also need the effect of the 4 term.

Dbly, 4 = =& (1-FO)) Ly, A3
ALy, = &0 (i-F@)) Ly v A 31
A Mu-v, = = (i-Fr)) Mo A 34
DMy, = AL (i-F) Man A 33
A My y = A3 G-F@) My, u A34
A My -y = J3' (}—F(r)) M-34. va A3y
A Mayn = V3 (1-F0) Mo A6
A s = AT (- F0) My A3

Putting all +these terms together, we get the effective

Lagrangian 3.5 in section III.



=95 - FERMILAB-Pub-83/104-THY

APPENDIX B

In this appendix, we shall derive the houndary
conditions that the fermions in the T = 3/2 representation
have to satisfy in the presence of the c¢lassical monopole
field,in the 1limit that ths <ore radius is vanishingly
small.

The equations of motion are abtained from the effective
Lagrangian 3.5 and for convenience, we shall use the

variables

. m
A - Lié&fdiﬁ- - lj'aé,VzR B8 i
- ™l - m
8 = Llf%ﬁﬂﬁﬁk + U'&Q,yLﬁ B 2.
m .m —
C‘ - U Y ’y)_ i - u,...'lil;—ylfq B 3
m m
v = Unmr ot Uyrye 34
— ™ ' o
(: - U kll"yl_R - L)',',‘ﬁ_’ V,g_R L)),_-’)"
m .M |
K = Uk, r + Uit &6
. TJ=0 ,T=0
G - Ve = Loy e B
; Ja2 O PR
H - Uy, ds n U»V;,V;, R B¥

Since we are interested in the bhehaviour of the solutions
near the monopole - j.e. when r << E"l, - we may set (30\)
= EU Y 0. In this region, the equations of motion are
- =7
ahl‘} "T"\ng (j._.F(\,))D = O B89
Pa
1

dnld <+ V3 ¢ ( | — FCa’)) C

3
e

it

O Bio
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—nC 3L (1 =F)B ~Jak k = o

T i
1
. —1 . .
- a?’lD -+ L (i" l:(T)) ﬂ _ ﬂ\l}____.(, o= O elg\
2 ' b
onk - \!?b B - & (I"’ F(‘))(; =W B3
2 2
Fa)
ak VR C A (-Fa))K =0 B4
Py N
dn (3 — & (;-F(r)>€m = O B3
N
P 4 = . - Bl{}
Dn 4+ & [~ F(vy) H = O
o g (1mr)

Equations B15 and Bl6 describe the motion of the J =0
conponenk and for finiteness of the solution at r = 0, we
have to set

H{ve) = O 31
This is exacktly analogous to the T = 1/2 case.

For the J = 1 components, some unscrambling of the
equations has to be done.Equations B9, Bl2 and B1l3 form one
set, and B1l0, Bll and Bl4 form another set. We shall derive
the boundary conditions under the following approximaiion

} Eig

F(r) = 0, r<r0

F(r)

1, r>r0
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but as we shall show later, the boundary conditions are
valid for arbitrary F(r}.

Let us solve the system of equations B9, R12 and 313
outside the monopole core. A Adecouples from D and E and
equation BY has the solution

A = constant, ry < r << g1 Bi9

B12 and Bl3 are coupled egquations that c¢an be solved

yvielding

" 2’ 'EL%L |

D = din + da (’;i) . Ye<¥ye=Ck
A a0

F3 Jﬂi‘_l/
. . 17 [t e _
2 . Ldiw "t~ Ldg (ne) 'L, Yo © Ta< g
Vi

where d, and d, are constants independeat of r and rg+. The

factors of g in the numerator come from the requirement of
= -+

sgquare integrability of the solutions - i.e. IDIlciv P
[t |
[ v,
) @
j €] cly = finite. These solutions implv the condition
T
ib+ E=0, r = o B3a2

Let us now consider the eguations inside the monopole
core.Eliminating A and 7 from the set of equations, we get

the following third order differential eguation for 9.

62 A -+ éiﬁ = O

|

A*2%D + nd’A

N B3
with the solution
. 3 \
D = din + dya”+ d3 p b
f"l.?"
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Ao

C L .  q A ..
The condition of square integrability ( J’ 12" dy = finite
o]

) eliminates the solution I/XL, 80 that we are left with
D = din o+ daw?® , Y < ¥o B>

From this,we also obtain

A = J-—\Jr?id.ﬂ - C’j.afh‘s , r<¥s Bae
ER

= | : 3 . .

E = —aicdha o+ VAo dan® | y<ve BT

This gives us the relation that

acD +d3A - L E =0 .Y
EY

i

'U'o B olg

We carry out the same manipulations for the obiher set

of equations Bl10,Bll and Bl4. From the solutions for r >

Lar by we get

ic+K =0,r =r, 629
For r < ry, by eliminating 3 anl X, we get
A2 2%C 4+ 5,0C -223C - L = O B30
A
Which has the solution
d & l
C = R A -+ B_& + kg_é , v<de A3

Here the condition of square integrahility leaves us with
R
C = kin , V<o B a2

The solutions for B and K are

B = '-Jgﬂ,b.ﬁQ ,or < Yo A33
i = C‘kl 711' , ry< Ty B34

2/
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These solutions lead to the following relations at r = "y
+3 ( C B =o , ¥ = Yo 835
-L ¢ + K  =o . 7T =v¥e  B36
Q2
Now, we have conditions at r = Lgr oObtained from

solutions for r > rqg and r < rg4, which have to match
smoothly, For the set A,D and B, equations B22 and B28 can
he satisfied with non-zero values of A,D andl B at r = £g.
But for the set B,C and K, equations B29, B35 and B36 have

Fhe solutions

R(ry) =0 B 3%
B(ry) =0 R 39

Let us look at the effect of D and ® for r >> ¢ The second

.

L

term in eguations B20 and 321 is negligible for this
region.dence,effectively, we may set d2 = 0, when w@e are
considering its effect for ¢ >> tge In the limit, o 0,
the first tecm is negligible in both the solutions.

S50,effectively, we may set

E(ro) =0 R4
But, even though A,D and PE are related at r = Ly, these

effective boundary conditions cannot be used to set anv

i

houndary condition on A, Thus, we get the effective
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boundary conditioas that we mentioned in section ITI. Though
the Dboundary c¢onditions have been derived using the step
function approximation for F(r), they are valid for
arbitrary F(r).Since F{0) = 0,the differaatial equations B23
and B30 do not change, so that we still have the same r
dependence near the origin.Since ¥F(r} dJdescribes their
evolution from O to r,, different linear combinations may be
zero at ry - i.e., we expect equations B28,B35 and B36 to
change. But this dJdoes ant change any of the boundary

conditions.
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